Generating function
$$U_{802}(x, y) = \frac{- 2 x + y - \sqrt{4 x + y^{2} + y \left(- 4 x - 2\right) + 1} - 1}{2 y - 2}$$
Explicit formula
$$T_{802}(n, m, k) = \begin{cases}\frac{2 \left(-1\right)^{n - 1} k {\binom{- 2 k + 2 n - 1}{n - 1}} {\binom{m + n - 1}{m}}}{n}&\text{if n>0} ,\ \\0&\text{if n=0} \end{cases} $$
0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 2 | 2 | 2 | 2 | 2 |
-1 | -2 | -3 | -4 | -5 | -6 | -7 |
2 | 6 | 12 | 2 | 3 | 42 | 56 |
-5 | -2 | -5 | -1 | -175 | -28 | -42 |
14 | 7 | 21 | 49 | 98 | 1764 | 294 |
-42 | -252 | -882 | -2352 | -5292 | -10584 | -19404 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #802?