Pyramid #782
Generating function
$$U_{782}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3} \left(- x + \frac{1 - \sqrt{1 - 4 y}}{2 y}\right)^{2}}$$
Explicit formula
$$T_{782}(n, m, k) = \begin{cases}{\binom{2 k + n - 1}{n}}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m - 1} \left(k - n\right) {\binom{2 k + n - 1}{n}} {\binom{- k - m + n - 1}{m - 1}}}{m} \end{cases} $$
Data table
1 1 2 5 14 42 132
2 0 0 0 0 0 0
3 -3 -3 -6 -15 -42 -126
4 -8 -4 -8 -2 -56 -168
5 -15 0 -5 -15 -45 -14
6 -24 12 0 -6 -24 -84
7 -35 35 0 0 -7 -35
Export
expand_less