Generating function
$$U_{782}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3} \left(- x + \frac{1 - \sqrt{1 - 4 y}}{2 y}\right)^{2}}$$
Explicit formula
$$T_{782}(n, m, k) = \begin{cases}{\binom{2 k + n - 1}{n}}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m - 1} \left(k - n\right) {\binom{2 k + n - 1}{n}} {\binom{- k - m + n - 1}{m - 1}}}{m} \end{cases} $$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
2 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | -3 | -3 | -6 | -15 | -42 | -126 |
4 | -8 | -4 | -8 | -2 | -56 | -168 |
5 | -15 | 0 | -5 | -15 | -45 | -14 |
6 | -24 | 12 | 0 | -6 | -24 | -84 |
7 | -35 | 35 | 0 | 0 | -7 | -35 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #782?