Generating function
$$U_{764}(x, y) = \frac{\left(1 - 4 y\right) \left(1 - \sqrt{- \frac{4 x}{\sqrt{1 - 4 y}} + 1}\right)^{3}}{8 x^{3}}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{764}(n, m, k) = \frac{3 k \operatorname{TA_{984}}{\left(m,k + n \right)} {\binom{3 k + 2 n}{n}}}{3 k + 2 n}$$
1 | 2 | 6 | 20 | 70 | 252 | 924 |
3 | 12 | 48 | 192 | 768 | 3072 | 12288 |
9 | 54 | 270 | 1260 | 5670 | 24948 | 108108 |
28 | 224 | 1344 | 7168 | 35840 | 172032 | 802816 |
90 | 900 | 6300 | 37800 | 207900 | 1081080 | 5405400 |
297 | 3564 | 28512 | 190080 | 1140480 | 6386688 | 34062336 |
1001 | 14014 | 126126 | 924924 | 6012006 | 36072036 | 204408204 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #764?