Generating function
$$U_{762}(x, y) = \frac{\left(1 - \sqrt{- 2 x \left(\sqrt{4 y + 1} + 1\right) + 1}\right)^{3}}{2 x^{3} \left(\sqrt{4 y + 1} + 1\right)^{2}}$$
Explicit formula
$$TA_{271825}(n, k) = \begin{cases}1&\text{if n = 0},\\\frac {k {(-1)}^{n-1}} {n} {\binom{2n-k-1}{n-1}} &\text{if n > 0},\\\end{cases} $$$$T_{762}(n, m, k) = \frac{3 k \operatorname{TA_{271825}}{\left(m,k + n \right)} {\binom{3 k + 2 n}{n}}}{3 k + 2 n}$$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
3 | 6 | -3 | 6 | -15 | 42 | -126 |
9 | 27 | 0 | 9 | -27 | 81 | -252 |
28 | 112 | 56 | 0 | -28 | 112 | -392 |
9 | 450 | 450 | 0 | 0 | 90 | -450 |
297 | 1782 | 2673 | 594 | 0 | 0 | -297 |
1001 | 7007 | 14014 | 7007 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #762?