Pyramid #755
Generating function
$$U_{755}(x, y) = \frac{\left(1 - 4 y\right)^{\frac{3}{2}} \left(- \frac{2 x}{1 - 4 y} - \sqrt{- \frac{4 x}{1 - 4 y} + 1} + 1\right)}{2 x^{2}}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{755}(n, m, k) = \frac{k \operatorname{TA_{984}}{\left(m,k + 2 n \right)} {\binom{2 k + 2 n}{n}}}{k + n}$$
Data table
1 2 6 20 70 252 924
2 12 60 280 1260 5544 24024
5 50 350 2100 11550 60060 300300
14 196 1764 12936 84084 504504 2858856
42 756 8316 72072 540540 3675672 23279256
132 2904 37752 377520 3208920 24387792 170714544
429 11154 167310 1896180 18013710 151315164 1160082924
Export
expand_less