Generating function
$$U_{755}(x, y) = \frac{\left(1 - 4 y\right)^{\frac{3}{2}} \left(- \frac{2 x}{1 - 4 y} - \sqrt{- \frac{4 x}{1 - 4 y} + 1} + 1\right)}{2 x^{2}}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{755}(n, m, k) = \frac{k \operatorname{TA_{984}}{\left(m,k + 2 n \right)} {\binom{2 k + 2 n}{n}}}{k + n}$$
1 | 2 | 6 | 20 | 70 | 252 | 924 |
2 | 12 | 60 | 280 | 1260 | 5544 | 24024 |
5 | 50 | 350 | 2100 | 11550 | 60060 | 300300 |
14 | 196 | 1764 | 12936 | 84084 | 504504 | 2858856 |
42 | 756 | 8316 | 72072 | 540540 | 3675672 | 23279256 |
132 | 2904 | 37752 | 377520 | 3208920 | 24387792 | 170714544 |
429 | 11154 | 167310 | 1896180 | 18013710 | 151315164 | 1160082924 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #755?