Generating function
$$U_{752}(x, y) = \frac{y^{6} \left(- \frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} - 4 \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1} + 4\right)}{x^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}$$
Explicit formula
$$T_{752}(n, m, k) = \frac{k \left(k + 2 n\right) {\binom{2 k + 2 n}{n}} {\binom{2 k + 2 m + 4 n}{m}}}{\left(k + n\right) \left(k + m + 2 n\right)}$$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
2 | 12 | 54 | 22 | 858 | 3276 | 12376 |
5 | 5 | 325 | 175 | 85 | 3876 | 169575 |
14 | 196 | 1666 | 11172 | 6517 | 347116 | 173558 |
42 | 756 | 7938 | 63756 | 4347 | 265356 | 1496313 |
132 | 2904 | 363 | 339768 | 2652804 | 18274872 | 114870624 |
429 | 11154 | 161733 | 172887 | 15214056 | 116804688 | 810332523 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #752?