Pyramid #722
Generating function
$$U_{722}(x, y) = \frac{1 - \sqrt{- 4 x \left(4 y + 1\right)^{2} + 1}}{2 x \left(4 y + 1\right)^{\frac{3}{2}}}$$
Explicit formula
$$TLeftA_{271825}(n, k) = \begin{cases}1&\text{if n = 0},\\\frac {k {(-1)}^{n-1}} {n} {\binom{3n-k-1}{n-1}} &\text{if n > 0},\\\end{cases} $$$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{722}(n, m, k) = \frac{k \operatorname{TLeftA_{271825}}{\left(n,k + 4 n \right)} \operatorname{Tsqrt}{\left(m,k + 4 n \right)}}{k + 4 n}$$
Data table
1 2 -2 4 -10 28 -84
1 10 30 20 -10 12 -20
2 36 252 840 1260 504 -168
5 130 1430 8580 30030 60060 60060
14 476 7140 61880 340340 1225224 2858856
42 1764 33516 379848 2848860 14814072 54318264
132 6600 151800 2125200 20189400 137287920 686439600
Export
expand_less