Generating function
$$U_{711}(x, y) = 2 x^{2} y + x \sqrt{4 x^{2} y^{2} + 4 y + 1} + 1$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{711}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(m,n \right)} {\binom{k + m}{n}}}{k + m}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2 | -2 | 4 | -10 | 28 | -84 |
0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | -4 | 12 | -40 | 140 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -2 | 12 | -60 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #711?