Pyramid #711
Generating function
$$U_{711}(x, y) = 2 x^{2} y + x \sqrt{4 x^{2} y^{2} + 4 y + 1} + 1$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{711}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(m,n \right)} {\binom{k + m}{n}}}{k + m}$$
Data table
1 0 0 0 0 0 0
1 2 -2 4 -10 28 -84
0 2 0 0 0 0 0
0 0 2 -4 12 -40 140
0 0 0 0 0 0 0
0 0 0 0 -2 12 -60
0 0 0 0 0 0 0
Export
expand_less