Generating function
$$U_{707}(x, y) = \frac{- 2 y \sqrt{4 x + 1} - \sqrt{- 4 y \sqrt{4 x + 1} + 1} + 1}{2 y^{2} \sqrt{4 x + 1}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{707}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(n,k + m \right)} {\binom{2 k + 2 m}{m}}}{k + m}$$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
2 | 8 | 30 | 112 | 420 | 1584 | 6006 |
-2 | 0 | 3 | 224 | 1260 | 6336 | 30030 |
4 | 0 | -20 | 0 | 84 | 8448 | 60060 |
-10 | 0 | 30 | 0 | -420 | 0 | 3003 |
28 | 0 | -60 | 0 | 504 | 0 | -12012 |
-84 | 0 | 140 | 0 | -840 | 0 | 12012 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #707?