Pyramid #707
Generating function
$$U_{707}(x, y) = \frac{- 2 y \sqrt{4 x + 1} - \sqrt{- 4 y \sqrt{4 x + 1} + 1} + 1}{2 y^{2} \sqrt{4 x + 1}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{707}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(n,k + m \right)} {\binom{2 k + 2 m}{m}}}{k + m}$$
Data table
1 2 5 14 42 132 429
2 8 30 112 420 1584 6006
-2 0 3 224 1260 6336 30030
4 0 -20 0 84 8448 60060
-10 0 30 0 -420 0 3003
28 0 -60 0 504 0 -12012
-84 0 140 0 -840 0 12012
Export
expand_less