Generating function
$$U_{705}(x, y) = \frac{1 - \sqrt{y \left(- 16 x - 4\right) + 1}}{2 y \sqrt{4 x + 1}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{705}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(n,k + 2 m \right)} {\binom{k + 2 m}{m}}}{k + 2 m}$$
| 1 | 1 | 2 | 5 | 14 | 42 | 132 |
| 2 | 6 | 20 | 70 | 252 | 924 | 3432 |
| -2 | 6 | 60 | 350 | 1764 | 8316 | 37752 |
| 4 | -4 | 4 | 700 | 5880 | 38808 | 226512 |
| -10 | 6 | -20 | 35 | 8820 | 97020 | 792792 |
| 28 | -12 | 24 | -140 | 3528 | 116424 | 1585584 |
| -84 | 28 | -40 | 140 | -1176 | 38808 | 1585584 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #705?