Pyramid #705
Generating function
$$U_{705}(x, y) = \frac{1 - \sqrt{y \left(- 16 x - 4\right) + 1}}{2 y \sqrt{4 x + 1}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{705}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(n,k + 2 m \right)} {\binom{k + 2 m}{m}}}{k + 2 m}$$
Data table
1 1 2 5 14 42 132
2 6 20 70 252 924 3432
-2 6 60 350 1764 8316 37752
4 -4 4 700 5880 38808 226512
-10 6 -20 35 8820 97020 792792
28 -12 24 -140 3528 116424 1585584
-84 28 -40 140 -1176 38808 1585584
Export
expand_less