Generating function
$$U_{628}(x, y) = 2 x + \sqrt{4 x^{2} + \frac{1}{\left(1 - y\right)^{2}}}$$
Explicit formula
$$T_{628}(n, m, k) = \begin{cases}{\binom{k + m - 1}{m}}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} \cdot 4^{n} k {\binom{- \frac{k}{2} + \frac{n}{2} - 1}{n - 1}} {\binom{k + m - n - 1}{m}}}{2 n}&\text{if n>0} \end{cases} $$
1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #628?