Generating function
$$U_{596}(x, y) = \frac{y^{2}}{2} + \frac{\sqrt{4 x \left(y^{2} + 1\right)^{3} + \left(y^{2} + 1\right)^{2}}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{596}(n, m, k) = \begin{cases}\frac{k \left(\frac{\left(-1\right)^{m}}{2} + \frac{1}{2}\right) {\binom{k + n}{\frac{m}{2}}}}{k + n}&\text{if n==0 } ,\ \\\frac{\left(-1\right)^{n - 1} k \left(\frac{\left(-1\right)^{m}}{2} + \frac{1}{2}\right) {\binom{k + n}{\frac{m}{2}}} {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if n>0} \end{cases} $$
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 2 | 0 | 1 | 0 | 0 |
-1 | 0 | -3 | 0 | -3 | 0 | -1 |
2 | 0 | 8 | 0 | 12 | 0 | 8 |
-5 | 0 | -25 | 0 | -50 | 0 | -50 |
14 | 0 | 84 | 0 | 210 | 0 | 280 |
-42 | 0 | -294 | 0 | -882 | 0 | -1470 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #596?