Pyramid #596
Generating function
$$U_{596}(x, y) = \frac{y^{2}}{2} + \frac{\sqrt{4 x \left(y^{2} + 1\right)^{3} + \left(y^{2} + 1\right)^{2}}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{596}(n, m, k) = \begin{cases}\frac{k \left(\frac{\left(-1\right)^{m}}{2} + \frac{1}{2}\right) {\binom{k + n}{\frac{m}{2}}}}{k + n}&\text{if n==0 } ,\ \\\frac{\left(-1\right)^{n - 1} k \left(\frac{\left(-1\right)^{m}}{2} + \frac{1}{2}\right) {\binom{k + n}{\frac{m}{2}}} {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if n>0} \end{cases} $$
Data table
1 0 1 0 0 0 0
1 0 2 0 1 0 0
-1 0 -3 0 -3 0 -1
2 0 8 0 12 0 8
-5 0 -25 0 -50 0 -50
14 0 84 0 210 0 280
-42 0 -294 0 -882 0 -1470
Export
expand_less