Generating function
$$U_{592}(x, y) = \frac{x \left(\sqrt{4 y + 1} + 1\right)^{3}}{8} + \frac{\sqrt{4 y + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{592}(n, m, k) = \begin{cases}{\binom{k}{n}}&\text{if m==0} ,\ \\\frac{\left(-1\right)^{m - 1} \left(k + 2 n\right) {\binom{k}{n}} {\binom{- k + 2 m - 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
1 | 3 | 0 | 1 | -3 | 9 | -28 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #592?