Pyramid #581
Generating function
$$U_{581}(x, y) = \frac{\sqrt{\frac{4 x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + \frac{1}{1 - 4 y}}}{2} + \frac{1}{2 \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{581}(n, m, k) = \begin{cases}\frac{4^{m} k {\binom{\frac{k}{2} + m + \frac{n}{2} - 1}{m}}}{k + n}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} \cdot 4^{m} k {\binom{- k + 2 n - 1}{n - 1}} {\binom{\frac{k}{2} + m + \frac{n}{2} - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
Data table
1 0 0 0 0 0 0
1 4 16 64 256 1024 4096
-1 -4 -16 -64 -256 -1024 -4096
2 16 96 512 256 12288 57344
-5 -4 -24 -128 -64 -3072 -14336
14 168 1344 896 5376 301056 1605632
-42 -504 -4032 -2688 -16128 -903168 -4816896
Export
expand_less