Generating function
$$U_{581}(x, y) = \frac{\sqrt{\frac{4 x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + \frac{1}{1 - 4 y}}}{2} + \frac{1}{2 \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{581}(n, m, k) = \begin{cases}\frac{4^{m} k {\binom{\frac{k}{2} + m + \frac{n}{2} - 1}{m}}}{k + n}&\text{if n==0} ,\ \\\frac{\left(-1\right)^{n - 1} \cdot 4^{m} k {\binom{- k + 2 n - 1}{n - 1}} {\binom{\frac{k}{2} + m + \frac{n}{2} - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 16 | 64 | 256 | 1024 | 4096 |
-1 | -4 | -16 | -64 | -256 | -1024 | -4096 |
2 | 16 | 96 | 512 | 256 | 12288 | 57344 |
-5 | -4 | -24 | -128 | -64 | -3072 | -14336 |
14 | 168 | 1344 | 896 | 5376 | 301056 | 1605632 |
-42 | -504 | -4032 | -2688 | -16128 | -903168 | -4816896 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #581?