Generating function
$$U_{542}(x, y) = \frac{y^{2} \left(\sqrt{4 x + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{4}}{16 y^{8}}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}\right)}{- 2 y - \sqrt{1 - 4 y} + 1}$$
Explicit formula
$$T_{542}(n, m, k) = \begin{cases}1&\text{if n=0, m=0} ,\ \\\frac{k {\binom{k - n - 1}{n - 1}}}{n}&\text{if m=0, n>0} ,\ \\\frac{k {\binom{2 k + 2 m}{m}}}{k + m}&\text{if n=0, m>0} ,\ \\\frac{2 k \left(k - 4 n\right) {\binom{k - n - 1}{n - 1}} {\binom{2 k + 2 m - 8 n - 1}{m - 1}}}{m n}&\text{if n>0, m>0} \end{cases} $$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
1 | -6 | 9 | -2 | 0 | 0 | -1 |
-1 | 14 | -77 | 21 | -294 | 196 | -49 |
2 | -44 | 418 | -2244 | 748 | -16016 | 22022 |
-5 | 15 | -2025 | 1625 | -8625 | 31878 | -841225 |
14 | -532 | 931 | -99484 | 725648 | -3826144 | 15065442 |
-42 | 1932 | -41538 | 554484 | -514878 | 35313096 | -185393754 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #542?