Pyramid #542
Generating function
$$U_{542}(x, y) = \frac{y^{2} \left(\sqrt{4 x + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{4}}{16 y^{8}}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}\right)}{- 2 y - \sqrt{1 - 4 y} + 1}$$
Explicit formula
$$T_{542}(n, m, k) = \begin{cases}1&\text{if n=0, m=0} ,\ \\\frac{k {\binom{k - n - 1}{n - 1}}}{n}&\text{if m=0, n>0} ,\ \\\frac{k {\binom{2 k + 2 m}{m}}}{k + m}&\text{if n=0, m>0} ,\ \\\frac{2 k \left(k - 4 n\right) {\binom{k - n - 1}{n - 1}} {\binom{2 k + 2 m - 8 n - 1}{m - 1}}}{m n}&\text{if n>0, m>0} \end{cases} $$
Data table
1 2 5 14 42 132 429
1 -6 9 -2 0 0 -1
-1 14 -77 21 -294 196 -49
2 -44 418 -2244 748 -16016 22022
-5 15 -2025 1625 -8625 31878 -841225
14 -532 931 -99484 725648 -3826144 15065442
-42 1932 -41538 554484 -514878 35313096 -185393754
Export
expand_less