Generating function
$$U_{532}(x, y) = \frac{\left(1 - y\right)^{2} \left(\sqrt{4 x + \frac{1}{\left(1 - y\right)^{8}}} + \frac{1}{\left(1 - y\right)^{4}}\right)}{2}$$
Explicit formula
$$T_{532}(n, m, k) = \begin{cases}{\binom{2 k + m - 1}{m}}&\text{if n==0 } ,\ \\\frac{k {\binom{k - n - 1}{n - 1}} {\binom{2 k + m - 8 n - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | -6 | 15 | -2 | 15 | -6 | 1 |
-1 | 14 | -91 | 364 | -1001 | 2002 | -3003 |
2 | -44 | 462 | -308 | 1463 | -52668 | 149226 |
-5 | 15 | -2175 | 203 | -137025 | 71253 | -2968875 |
14 | -532 | 9842 | -118104 | 103341 | -7027188 | 38649534 |
-42 | 1932 | -4347 | 63756 | -685377 | 57571668 | -393406398 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #532?