Pyramid #532
Generating function
$$U_{532}(x, y) = \frac{\left(1 - y\right)^{2} \left(\sqrt{4 x + \frac{1}{\left(1 - y\right)^{8}}} + \frac{1}{\left(1 - y\right)^{4}}\right)}{2}$$
Explicit formula
$$T_{532}(n, m, k) = \begin{cases}{\binom{2 k + m - 1}{m}}&\text{if n==0 } ,\ \\\frac{k {\binom{k - n - 1}{n - 1}} {\binom{2 k + m - 8 n - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
Data table
1 2 3 4 5 6 7
1 -6 15 -2 15 -6 1
-1 14 -91 364 -1001 2002 -3003
2 -44 462 -308 1463 -52668 149226
-5 15 -2175 203 -137025 71253 -2968875
14 -532 9842 -118104 103341 -7027188 38649534
-42 1932 -4347 63756 -685377 57571668 -393406398
Export
expand_less