Generating function
$$U_{475}(x, y) = \frac{\left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2} + \sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{4}}}{2 - \frac{8 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}}$$
Explicit formula
$$T_{475}(n, m, k) = \begin{cases}\frac{k {\binom{k - n - 1}{n - 1}}}{n}&\text{if n>0 and m=0} ,\ \\1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{- k + 3 m - 1}{m - 1}}}{m}&\text{if n=0 and m>0} ,\ \\\frac{\left(-1\right)^{m - 1} k \left(k - 3 n\right) {\binom{k - n - 1}{n - 1}} {\binom{- k + 3 m + 3 n - 1}{m - 1}}}{m n}&\text{if n>0 and m>0} \end{cases} $$
1 | 1 | -2 | 7 | -3 | 143 | -728 |
1 | -2 | 7 | -3 | 143 | -728 | 3876 |
-1 | 5 | -25 | 13 | -7 | 3876 | -21945 |
2 | -16 | 104 | -64 | 3876 | -23408 | 14168 |
-5 | 55 | -44 | 3135 | -21175 | 13915 | -9009 |
14 | -196 | 1862 | -15092 | 1127 | -80262 | 5550426 |
-42 | 714 | -7854 | 714 | -584766 | 4493202 | -33112464 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #475?