Generating function
$$U_{463}(x, y) = \frac{\left(1 - y\right) \left(\sqrt{\frac{4 x}{1 - y} + \frac{1}{\left(1 - y\right)^{4}}} + \frac{1}{\left(1 - y\right)^{2}}\right)}{2}$$
Explicit formula
$$T_{463}(n, m, k) = \begin{cases}{\binom{k + m - 1}{m}}&\text{if n=0} ,\ \\\frac{k {\binom{k - n - 1}{n - 1}} {\binom{k + m - 3 n - 1}{m}}}{n} \end{cases} $$
1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | -2 | 1 | 0 | 0 | 0 | 0 |
-1 | 5 | -1 | 1 | -5 | 1 | 0 |
2 | -16 | 56 | -112 | 14 | -112 | 56 |
-5 | 55 | -275 | 825 | -165 | 231 | -231 |
14 | -196 | 1274 | -5096 | 14014 | -28028 | 42042 |
-42 | 714 | -5712 | 2856 | -9996 | 259896 | -519792 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #463?