Generating function
$$U_{436}(x, y) = \frac{x^{4} - 4 x^{3} + 6 x^{2} - 4 x + \left(x - 1\right) \sqrt{x^{6} - 6 x^{5} + 15 x^{4} - 20 x^{3} + 15 x^{2} - 6 x - 4 y + 1} + 1}{2 y}$$
Explicit formula
$$T_{436}(n, m, k) = \frac{k {\binom{k + 2 m}{m}} {\binom{2 k + 6 m + n - 1}{n}}}{k + 2 m}$$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
2 | 8 | 28 | 1 | 364 | 1344 | 5016 |
3 | 36 | 21 | 105 | 4914 | 22176 | 97812 |
4 | 12 | 112 | 77 | 45864 | 251328 | 130416 |
5 | 33 | 476 | 44275 | 332514 | 219912 | 1336764 |
6 | 792 | 17136 | 21252 | 1995084 | 15833664 | 112288176 |
7 | 1716 | 54264 | 8855 | 10307934 | 97640928 | 804731928 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #436?