Generating function
$$U_{428}(x, y) = \frac{- 2 y - \sqrt{1 - 4 y} - \sqrt{2} \sqrt{8 x y^{4} + 2 y^{2} - 4 y + \sqrt{1 - 4 y} \left(2 y - 1\right) + 1} + 1}{4 y^{2}}$$
Explicit formula
$$T_{428}(n, m, k) = \begin{cases}0&\text{if n<k} ,\ \\- \frac{k {\binom{k - n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\- \frac{2 k {\binom{k - n - 1}{n}} {\binom{2 k + 2 m - 4 n - 1}{m - 1}}}{m} \end{cases} $$
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 2 | 1 | 2 | 5 | 14 | 42 |
1 | -6 | 9 | -2 | 0 | 0 | -1 |
-2 | 2 | -7 | 1 | -5 | 4 | 0 |
5 | -7 | 385 | -105 | 147 | -98 | 245 |
-14 | 252 | -189 | 7644 | -18018 | 24948 | -19404 |
42 | -924 | 8778 | -47124 | 15708 | -336336 | 462462 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #428?