Generating function
$$U_{412}(x, y) = \frac{\sqrt{4 y + 1}}{6} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{36 \sqrt[3]{\frac{x \left(\sqrt{4 y + 1} + 1\right)}{4} + \frac{\sqrt{3} \sqrt{x \left(27 x + \left(\sqrt{4 y + 1} + 1\right)^{2}\right)} \left(\sqrt{4 y + 1} + 1\right)}{36} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{3}}{216}}} + \sqrt[3]{\frac{x \left(\sqrt{4 y + 1} + 1\right)}{4} + \frac{\sqrt{3} \sqrt{x \left(27 x + \left(\sqrt{4 y + 1} + 1\right)^{2}\right)} \left(\sqrt{4 y + 1} + 1\right)}{36} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{3}}{216}} + \frac{1}{6}$$
Explicit formula
$$T_{412}(n, m, k) = \begin{cases}1&\text{if m=0,n=0} ,\ \\\frac{k {\binom{k - 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{k - 2 n}{n}} {\binom{- k + 2 m + 2 n - 1}{m - 1}}}{m} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
1 | -1 | 2 | -5 | 14 | -42 | 132 |
-2 | 6 | -18 | 56 | -18 | 594 | -2002 |
7 | -35 | 14 | -525 | 1925 | -7007 | 2548 |
-3 | 21 | -105 | 462 | -1911 | 7644 | -29988 |
143 | -1287 | 7722 | -39039 | 18018 | -787644 | 3325608 |
-728 | 8008 | -56056 | 32032 | -1633632 | 7759752 | -35147112 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #412?