Pyramid #412
Generating function
$$U_{412}(x, y) = \frac{\sqrt{4 y + 1}}{6} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{36 \sqrt[3]{\frac{x \left(\sqrt{4 y + 1} + 1\right)}{4} + \frac{\sqrt{3} \sqrt{x \left(27 x + \left(\sqrt{4 y + 1} + 1\right)^{2}\right)} \left(\sqrt{4 y + 1} + 1\right)}{36} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{3}}{216}}} + \sqrt[3]{\frac{x \left(\sqrt{4 y + 1} + 1\right)}{4} + \frac{\sqrt{3} \sqrt{x \left(27 x + \left(\sqrt{4 y + 1} + 1\right)^{2}\right)} \left(\sqrt{4 y + 1} + 1\right)}{36} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{3}}{216}} + \frac{1}{6}$$
Explicit formula
$$T_{412}(n, m, k) = \begin{cases}1&\text{if m=0,n=0} ,\ \\\frac{k {\binom{k - 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{k - 2 n}{n}} {\binom{- k + 2 m + 2 n - 1}{m - 1}}}{m} \end{cases} $$
Data table
1 1 -1 2 -5 14 -42
1 -1 2 -5 14 -42 132
-2 6 -18 56 -18 594 -2002
7 -35 14 -525 1925 -7007 2548
-3 21 -105 462 -1911 7644 -29988
143 -1287 7722 -39039 18018 -787644 3325608
-728 8008 -56056 32032 -1633632 7759752 -35147112
Export
expand_less