Pyramid #401
Generating function
$$U_{401}(x, y) = \sqrt[3]{\frac{x \left(1 - \sqrt{1 - 4 y}\right)}{4 y} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)} \left(1 - \sqrt{1 - 4 y}\right)}{36 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}} + \frac{1 - \sqrt{1 - 4 y}}{6 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{36 y^{2} \sqrt[3]{\frac{x \left(1 - \sqrt{1 - 4 y}\right)}{4 y} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)} \left(1 - \sqrt{1 - 4 y}\right)}{36 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}}}$$
Explicit formula
$$T_{401}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 3 n - 1}{n - 1}}}{n}&\text{if n>0 and m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{k - 2 n}{n}} {\binom{- k - m + 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
Data table
1 1 2 5 14 42 132
1 -1 -1 -2 -5 -14 -42
-2 6 0 2 6 18 56
7 -35 35 0 0 -7 -35
-3 21 -42 21 0 0 0
143 -1287 3861 -429 1287 0 0
-728 8008 -32032 56056 -4004 8008 0
Export
expand_less