Generating function
$$U_{401}(x, y) = \sqrt[3]{\frac{x \left(1 - \sqrt{1 - 4 y}\right)}{4 y} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)} \left(1 - \sqrt{1 - 4 y}\right)}{36 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}} + \frac{1 - \sqrt{1 - 4 y}}{6 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{36 y^{2} \sqrt[3]{\frac{x \left(1 - \sqrt{1 - 4 y}\right)}{4 y} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)} \left(1 - \sqrt{1 - 4 y}\right)}{36 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}}}$$
Explicit formula
$$T_{401}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 3 n - 1}{n - 1}}}{n}&\text{if n>0 and m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{k - 2 n}{n}} {\binom{- k - m + 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
1 | -1 | -1 | -2 | -5 | -14 | -42 |
-2 | 6 | 0 | 2 | 6 | 18 | 56 |
7 | -35 | 35 | 0 | 0 | -7 | -35 |
-3 | 21 | -42 | 21 | 0 | 0 | 0 |
143 | -1287 | 3861 | -429 | 1287 | 0 | 0 |
-728 | 8008 | -32032 | 56056 | -4004 | 8008 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #401?