Generating function
$$U_{366}(x, y) = \frac{\sqrt{4 x + \frac{1}{\left(1 - y\right)^{2}}}}{2} + \frac{1}{2 - 2 y}$$
Explicit formula
$$T_{366}(n, m, k) = \begin{cases}{\binom{k + m - 1}{m}}&\text{if n=0} ,\ \\\frac{k {\binom{k - n - 1}{n - 1}} {\binom{k + m - 2 n - 1}{m}}}{n} \end{cases} $$
1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | -1 | 0 | 0 | 0 | 0 | 0 |
-1 | 3 | -3 | 1 | 0 | 0 | 0 |
2 | -1 | 2 | -2 | 1 | -2 | 0 |
-5 | 35 | -105 | 175 | -175 | 105 | -35 |
14 | -126 | 504 | -1176 | 1764 | -1764 | 1176 |
-42 | 462 | -231 | 693 | -1386 | 19404 | -19404 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #366?