Pyramid #362
Generating function
$$U_{362}(x, y) = \frac{y^{2}}{2} + y + \frac{\sqrt{4 x + y^{4} + 4 y^{3} + 6 y^{2} + 4 y + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{362}(n, m, k) = \begin{cases}\frac{k {\binom{2 k - 4 n}{m}} {\binom{k - n - 1}{n - 1}}}{n}&\text{if n>0} ,\ \\{\binom{2 k}{m}}&\text{if n=0} \end{cases} $$
Data table
1 2 1 0 0 0 0
1 -2 3 -4 5 -6 7
-1 6 -21 56 -126 252 -462
2 -2 11 -44 143 -4004 1001
-5 7 -525 28 -119 4284 -13566
14 -252 2394 -1596 8379 -368676 1413258
-42 924 -10626 85008 -5313 276276 -1243242
Export
expand_less