Generating function
$$U_{362}(x, y) = \frac{y^{2}}{2} + y + \frac{\sqrt{4 x + y^{4} + 4 y^{3} + 6 y^{2} + 4 y + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{362}(n, m, k) = \begin{cases}\frac{k {\binom{2 k - 4 n}{m}} {\binom{k - n - 1}{n - 1}}}{n}&\text{if n>0} ,\ \\{\binom{2 k}{m}}&\text{if n=0} \end{cases} $$
1 | 2 | 1 | 0 | 0 | 0 | 0 |
1 | -2 | 3 | -4 | 5 | -6 | 7 |
-1 | 6 | -21 | 56 | -126 | 252 | -462 |
2 | -2 | 11 | -44 | 143 | -4004 | 1001 |
-5 | 7 | -525 | 28 | -119 | 4284 | -13566 |
14 | -252 | 2394 | -1596 | 8379 | -368676 | 1413258 |
-42 | 924 | -10626 | 85008 | -5313 | 276276 | -1243242 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #362?