Generating function
$$U_{348}(x, y) = \frac{\frac{2 x}{3} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{36 y^{4}}}{\sqrt[3]{\frac{x^{2} y^{2}}{- 2 y - \sqrt{1 - 4 y} + 1} + \frac{\sqrt{3} x y^{2} \sqrt{x \left(27 x + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}}\right)}}{- 18 y - 9 \sqrt{1 - 4 y} + 9} + \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{6 y^{2}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{216 y^{6}}}} + \sqrt[3]{\frac{x^{2} y^{2}}{- 2 y - \sqrt{1 - 4 y} + 1} + \frac{\sqrt{3} x y^{2} \sqrt{x \left(27 x + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}}\right)}}{- 18 y - 9 \sqrt{1 - 4 y} + 9} + \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{6 y^{2}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{216 y^{6}}} + \frac{- 2 y - \sqrt{1 - 4 y} + 1}{6 y^{2}}$$
Explicit formula
$$T_{348}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{k {\binom{2 k + 2 m}{m}}}{k + m}&\text{if n=0} ,\ \\\frac{2 k {\binom{2 k - 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\\frac{4 k \left(k - 2 n\right) {\binom{2 k - 2 n - 1}{n - 1}} {\binom{2 k + 2 m - 4 n - 1}{m - 1}}}{m n}&\text{if n>0 and m>0} \end{cases} $$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
2 | -4 | -2 | -4 | -1 | -28 | -84 |
-3 | 18 | -27 | 6 | 0 | 0 | 3 |
1 | -1 | 35 | -5 | 25 | -2 | 0 |
-42 | 588 | -3234 | 882 | -12348 | 8232 | -2058 |
198 | -3564 | 2673 | -108108 | 254826 | -352836 | 274428 |
-1001 | 22022 | -209209 | 1123122 | -374374 | 8016008 | -11022011 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #348?