Generating function
$$U_{345}(x, y) = \frac{\frac{2 x}{3} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{36 y^{2}}}{\sqrt[3]{\frac{x^{2} y}{1 - \sqrt{1 - 4 y}} + \frac{\sqrt{3} x y \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)}}{9 - 9 \sqrt{1 - 4 y}} + \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{6 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}}} + \sqrt[3]{\frac{x^{2} y}{1 - \sqrt{1 - 4 y}} + \frac{\sqrt{3} x y \sqrt{x \left(27 x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)}}{9 - 9 \sqrt{1 - 4 y}} + \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{6 y} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{216 y^{3}}} + \frac{1 - \sqrt{1 - 4 y}}{6 y}$$
Explicit formula
$$T_{345}(n, m, k) = \begin{cases}\frac{k {\binom{k + 2 m - 1}{m}}}{k + m}&\text{if n=0} ,\ \\\frac{2 {\binom{2 k - 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\\frac{2 \left(-1\right)^{m - 1} k \left(k - 2 n\right) {\binom{2 k - 2 n - 1}{n - 1}} {\binom{- k - m + 2 n - 1}{m - 1}}}{m n}&\text{if m>0,n>0} \end{cases} $$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
2 | -2 | -2 | -4 | -1 | -28 | -84 |
-3 | 9 | 0 | 3 | 9 | 27 | 84 |
1 | -5 | 5 | 0 | 0 | -1 | -5 |
-42 | 294 | -588 | 294 | 0 | 0 | 0 |
198 | -1782 | 5346 | -594 | 1782 | 0 | 0 |
-1001 | 11011 | -44044 | 77077 | -55055 | 11011 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #345?