Generating function
$$U_{255}(x, y) = \frac{1}{\sqrt{- 4 x^{2} - 4 y + 1}}$$
Explicit formula
$$T_{255}(n, m, k) = \begin{cases}\frac{\left(\left(-1\right)^{n} + 1\right) {\binom{m + \frac{n}{2}}{m}} {\binom{\frac{k}{2} + m + \frac{n}{2}}{m + \frac{n}{2}}} {\binom{k + 2 m + n}{\frac{k}{2} + m + \frac{n}{2}}}}{2 {\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{\left(\left(-1\right)^{n} + 1\right) {\binom{m + \frac{n}{2}}{m}} {\binom{\frac{k}{2} + m + \frac{n}{2} - \frac{1}{2}}{m + \frac{n}{2}}} {\binom{k + 2 m + n - 1}{\frac{k}{2} + m + \frac{n}{2} - \frac{1}{2}}}}{2 {\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 6 | 2 | 7 | 252 | 924 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 12 | 6 | 28 | 126 | 5544 | 24024 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 6 | 42 | 252 | 1386 | 72072 | 36036 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 28 | 252 | 1848 | 12012 | 72072 | 408408 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #255?