Pyramid #225
Generating function
$$U_{225}(x, y) = \frac{- 2 x - \sqrt{1 - 4 x} + \sqrt{2} \sqrt{8 x^{4} y + 2 x^{2} - 4 x + \sqrt{1 - 4 x} \left(2 x - 1\right) + 1} + 1}{4 x^{2}}$$
Explicit formula
$$T_{225}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{k {\binom{k - m - 1}{m - 1}}}{m}&\text{if n=0 and m>0} ,\ \\\frac{2 k {\binom{k - m - 1}{m}} {\binom{2 k - 4 m + 2 n - 1}{n - 1}}}{n} \end{cases} $$
Data table
1 1 -1 2 -5 14 -42
2 -2 6 -2 7 -252 924
5 -1 -9 7 -385 189 -8778
14 -2 2 -1 105 -7644 47124
42 -5 0 5 -147 18018 -15708
132 -14 0 -4 98 -24948 336336
429 -42 1 0 -245 19404 -462462
Export
expand_less