Generating function
$$U_{225}(x, y) = \frac{- 2 x - \sqrt{1 - 4 x} + \sqrt{2} \sqrt{8 x^{4} y + 2 x^{2} - 4 x + \sqrt{1 - 4 x} \left(2 x - 1\right) + 1} + 1}{4 x^{2}}$$
Explicit formula
$$T_{225}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{k {\binom{k - m - 1}{m - 1}}}{m}&\text{if n=0 and m>0} ,\ \\\frac{2 k {\binom{k - m - 1}{m}} {\binom{2 k - 4 m + 2 n - 1}{n - 1}}}{n} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
2 | -2 | 6 | -2 | 7 | -252 | 924 |
5 | -1 | -9 | 7 | -385 | 189 | -8778 |
14 | -2 | 2 | -1 | 105 | -7644 | 47124 |
42 | -5 | 0 | 5 | -147 | 18018 | -15708 |
132 | -14 | 0 | -4 | 98 | -24948 | 336336 |
429 | -42 | 1 | 0 | -245 | 19404 | -462462 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #225?