Pyramid #1502
Generating function
$$U_{1502}(x, y) = \frac{1}{\left(1 - 4 y\right)^{\frac{3}{2}} \left(- \frac{x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + 1\right)}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{1502}(n, m, k) = \operatorname{TA_{984}}{\left(m,3 k + 3 n \right)} {\binom{2 k}{n}}$$
Data table
1 6 30 140 630 2772 12012
2 24 192 1280 7680 43008 229376
1 18 198 1716 12870 87516 554268
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Export
expand_less