Generating function
$$U_{1502}(x, y) = \frac{1}{\left(1 - 4 y\right)^{\frac{3}{2}} \left(- \frac{x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + 1\right)}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{1502}(n, m, k) = \operatorname{TA_{984}}{\left(m,3 k + 3 n \right)} {\binom{2 k}{n}}$$
1 | 6 | 30 | 140 | 630 | 2772 | 12012 |
2 | 24 | 192 | 1280 | 7680 | 43008 | 229376 |
1 | 18 | 198 | 1716 | 12870 | 87516 | 554268 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1502?