Generating function
$$U_{1499}(x, y) = \frac{1}{\left(1 - 4 y\right)^{\frac{3}{2}} \left(- \frac{x}{1 - 4 y} + 1\right)}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{1499}(n, m, k) = \operatorname{TA_{984}}{\left(m,3 k + 2 n \right)} {\binom{2 k}{n}}$$
Data table
1 6 30 140 630 2772 12012
2 20 140 840 4620 24024 120120
1 14 126 924 6006 36036 204204
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Related
Export
expand_less