Generating function
$$U_{1493}(x, y) = \frac{\left(\frac{x}{\sqrt{1 - 4 y}} + 1\right)^{2}}{1 - 4 y}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{1493}(n, m, k) = \operatorname{TA_{984}}{\left(m,2 k + n \right)} {\binom{2 k}{n}}$$
1 | 4 | 16 | 64 | 256 | 1024 | 4096 |
2 | 12 | 60 | 280 | 1260 | 5544 | 24024 |
1 | 8 | 48 | 256 | 1280 | 6144 | 28672 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1493?