Generating function
$$U_{1375}(x, y) = \frac{\left(y + 1\right)^{3}}{\sqrt{- 4 x \left(y + 1\right)^{3} + 1}}$$
Explicit formula
$$T_{1375}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{3 k + 3 n}{m}} {\binom{\frac{k}{2} + n - 1}{n}}&\text{if k even} ,\ \\\frac{{\binom{3 k + 3 n}{m}} {\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 3 | 3 | 1 | 0 | 0 | 0 |
2 | 12 | 3 | 4 | 3 | 12 | 2 |
6 | 54 | 216 | 504 | 756 | 756 | 504 |
2 | 24 | 132 | 44 | 99 | 1584 | 1848 |
7 | 105 | 735 | 3185 | 9555 | 21021 | 35035 |
252 | 4536 | 38556 | 205632 | 77112 | 2159136 | 4678128 |
924 | 19404 | 19404 | 122892 | 553014 | 18802476 | 50139936 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1375?