Generating function
$$U_{1375}(x, y) = \frac{\left(y + 1\right)^{3}}{\sqrt{- 4 x \left(y + 1\right)^{3} + 1}}$$
Explicit formula
$$T_{1375}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{3 k + 3 n}{m}} {\binom{\frac{k}{2} + n - 1}{n}}&\text{if k even} ,\ \\\frac{{\binom{3 k + 3 n}{m}} {\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 3 3 1 0 0 0
2 12 3 4 3 12 2
6 54 216 504 756 756 504
2 24 132 44 99 1584 1848
7 105 735 3185 9555 21021 35035
252 4536 38556 205632 77112 2159136 4678128
924 19404 19404 122892 553014 18802476 50139936
Related
Export
expand_less