Generating function
$$U_{1372}(x, y) = \frac{\left(y + 1\right)^{2}}{\sqrt{- 4 x \left(y + 1\right) + 1}}$$
Explicit formula
$$T_{1372}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{2 k + n}{m}} {\binom{\frac{k}{2} + n - 1}{n}}&\text{if k even} ,\ \\\frac{{\binom{2 k + n}{m}} {\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 1 | 0 | 0 | 0 | 0 |
2 | 6 | 6 | 2 | 0 | 0 | 0 |
6 | 24 | 36 | 24 | 6 | 0 | 0 |
2 | 1 | 2 | 2 | 1 | 2 | 0 |
7 | 42 | 105 | 14 | 105 | 42 | 7 |
252 | 1764 | 5292 | 882 | 882 | 5292 | 1764 |
924 | 7392 | 25872 | 51744 | 6468 | 51744 | 25872 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1372?