Generating function
$$U_{128}(x, y) = \frac{1}{\sqrt{x^{2} y^{2} - 4 x^{2} y - 2 x y + 1}}$$
Explicit formula
$$T_{128}(n, m, k) = \begin{cases}\frac{k {\binom{k + n}{k - 2 m + 2 n}} {\binom{k - m + n}{k}} {\binom{2 k - 2 m + 2 n}{k - m + n}}}{\left(k + n\right) {\binom{2 k}{k}}}&\text{if k odd} ,\ \\\frac{4^{- m + n} k {\binom{k + n}{k - 2 m + 2 n}} {\binom{k - m + n}{k}}}{k + n}&\text{if k even} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 1 | 0 | 0 | 0 |
0 | 0 | 6 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 2 | 9 | 3 | 1 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #128?