Generating function
$$U_{123}(x, y) = - \frac{2 x}{x y - x + \sqrt{x^{2} y^{2} + x^{2} - 2 x + y \left(- 2 x^{2} - 2 x\right) + 1} - 1}$$
Explicit formula
$$T_{123}(n, m, k) = \begin{cases}1&\text{if m=0 and n= 0} ,\ \\0&\text{if m=0 or n=0} ,\ \\- \frac{k {\binom{n - 1}{- m + n}} {\binom{- k + n - 1}{m - 1}}}{m}&\text{if m>0,n>0} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | -1 | -3 | -1 | 0 | 0 | 0 |
0 | -1 | -6 | -6 | -1 | 0 | 0 |
0 | -1 | -1 | -2 | -1 | -1 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #123?