Generating function
$$U_{1217}(x, y) = \frac{\sqrt{2} \sqrt{\frac{1 - \sqrt{1 - 16 y}}{y}} \left(x + 1\right)^{2}}{4}$$
Explicit formula
$$T_{1217}(n, m, k) = \begin{cases}1&\text{if n=0, m=0, k=0} ,\ \\\frac{k {\binom{2 k}{n}} {\binom{\frac{k}{2} + 2 m - \frac{1}{2}}{m}} {\binom{k + 4 m - 1}{\frac{k}{2} + 2 m - \frac{1}{2}}}}{\left(k + 2 m\right) {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}}}&\text{if k odd} ,\ \\\frac{4^{m} k {\binom{\frac{k}{2} + 2 m - 1}{m}}}{k + 2 m}&\text{if k even} \end{cases} $$
Data table
1 2 14 132 1430 16796 208012
2 4 28 264 2860 33592 416024
1 2 14 132 1430 16796 208012
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Related
Export
expand_less