Generating function
$$U_{1215}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right) \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Explicit formula
$$T_{1215}(n, m, k) = \frac{\left(2 k + 2 n\right) {\binom{k}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{2 k + m + 2 n}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
1 | 8 | 44 | 208 | 91 | 3808 | 15504 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1215?