Generating function
$$U_{1212}(x, y) = \frac{32768 y^{36} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{4 y^{6}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1} + 1\right)^{3}}{x^{6} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{18}}$$
Explicit formula
$$T_{1212}(n, m, k) = \frac{9 k n {\binom{6 k + 2 n}{n}} {\binom{2 m + 6 n}{m}}}{\left(3 k + n\right) \left(m + 3 n\right)}$$
nan | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 36 | 162 | 66 | 2574 | 9828 | 37128 |
27 | 324 | 243 | 14688 | 78489 | 387828 | 1817046 |
11 | 198 | 2079 | 16698 | 11385 | 69498 | 3918915 |
429 | 10296 | 138996 | 1393392 | 1157013 | 84262464 | 557068512 |
1638 | 4914 | 81081 | 97461 | 9545445 | 808362828 | 613756962 |
6188 | 222768 | 4343976 | 6088992 | 687294972 | 6638263632 | 56952087192 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1212?