Generating function
$$U_{1205}(x, y) = \frac{\left(1 - y\right)^{12} \left(- \frac{2 x}{\left(1 - y\right)^{2}} - \sqrt{- \frac{4 x}{\left(1 - y\right)^{2}} + 1} + 1\right)^{3}}{8 x^{6}}$$
Explicit formula
$$T_{1205}(n, m, k) = \frac{3 k {\binom{6 k + 2 n}{n}} {\binom{m + 2 n - 1}{m}}}{3 k + n}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 12 | 18 | 24 | 3 | 36 | 42 |
27 | 108 | 27 | 54 | 945 | 1512 | 2268 |
11 | 66 | 231 | 616 | 1386 | 2772 | 5082 |
429 | 3432 | 15444 | 5148 | 14157 | 339768 | 736164 |
1638 | 1638 | 9009 | 36036 | 117117 | 3279276 | 819819 |
6188 | 74256 | 482664 | 2252432 | 844662 | 27029184 | 76582688 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1205?