Generating function
$$U_{1202}(x, y) = \frac{\left(- 2 x \left(y + 1\right)^{2} - \sqrt{- 4 x \left(y + 1\right)^{2} + 1} + 1\right)^{3}}{8 x^{6} \left(y + 1\right)^{12}}$$
Explicit formula
$$T_{1202}(n, m, k) = \frac{3 k {\binom{2 n}{m}} {\binom{6 k + 2 n}{n}}}{3 k + n}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 12 | 6 | 0 | 0 | 0 | 0 |
27 | 108 | 162 | 108 | 27 | 0 | 0 |
11 | 66 | 165 | 22 | 165 | 66 | 11 |
429 | 3432 | 12012 | 24024 | 3003 | 24024 | 12012 |
1638 | 1638 | 7371 | 19656 | 34398 | 412776 | 34398 |
6188 | 74256 | 408408 | 136136 | 306306 | 4900896 | 5717712 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1202?