Generating function
$$U_{1196}(x, y) = \frac{64 y^{8} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{2 y^{2}} - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}} + 1} + 1\right)^{2}}{x^{4} \left(1 - \sqrt{1 - 4 y}\right)^{8}}$$
Explicit formula
$$T_{1196}(n, m, k) = \frac{4 k n {\binom{4 k + 2 n}{n}} {\binom{2 m + 2 n - 1}{m}}}{\left(2 k + n\right) \left(m + 2 n\right)}$$
nan | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 8 | 2 | 56 | 168 | 528 | 1716 |
14 | 56 | 196 | 672 | 231 | 8008 | 28028 |
48 | 288 | 1296 | 528 | 20592 | 78624 | 297024 |
165 | 132 | 726 | 3432 | 15015 | 62832 | 255816 |
572 | 572 | 3718 | 2002 | 9724 | 4434144 | 1939938 |
2002 | 24024 | 18018 | 1089088 | 5819814 | 28756728 | 134730596 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1196?