Generating function
$$U_{1187}(x, y) = \frac{\frac{2 x}{1 - y} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{2}} + 1}}{\left(1 - y\right)^{3}}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1187}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{3 k + m + n - 1}{m}}$$
Data table
1 3 6 1 15 21 28
2 8 2 4 7 112 168
2 1 3 7 14 252 42
0 0 0 0 0 0 0
-2 -14 -56 -168 -420 -924 -1848
0 0 0 0 0 0 0
4 36 180 660 1980 5148 12012
Related
Export
expand_less