Generating function
$$U_{1152}(x, y) = \frac{2 x}{1 - y} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{2}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1152}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{m + n - 1}{m}}$$
Data table
1 0 0 0 0 0 0
2 2 2 2 2 2 2
2 4 6 8 1 12 14
0 0 0 0 0 0 0
-2 -8 -20 -40 -70 -112 -168
0 0 0 0 0 0 0
4 24 84 224 504 1008 1848
Related
Export
expand_less