Generating function
$$U_{1152}(x, y) = \frac{2 x}{1 - y} + \sqrt{\frac{4 x^{2}}{\left(1 - y\right)^{2}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1152}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{m + n - 1}{m}}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 2 | 2 | 2 | 2 | 2 |
2 | 4 | 6 | 8 | 1 | 12 | 14 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -8 | -20 | -40 | -70 | -112 | -168 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 24 | 84 | 224 | 504 | 1008 | 1848 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1152?