Generating function
$$U_{1142}(x, y) = \frac{1}{\left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{2}}$$
Explicit formula
$$T_{1142}(n, m, k) = \frac{3 n {\binom{2 m + 6 n}{m}} {\binom{2 k + n - 1}{n}}}{m + 3 n}$$
| nan | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 12 | 54 | 22 | 858 | 3276 | 12376 |
| 3 | 36 | 27 | 1632 | 8721 | 43092 | 201894 |
| 4 | 72 | 756 | 6072 | 414 | 25272 | 142506 |
| 5 | 12 | 162 | 1624 | 13485 | 98208 | 649264 |
| 6 | 18 | 297 | 357 | 34965 | 2961036 | 2248194 |
| 7 | 252 | 4914 | 6888 | 777483 | 7509348 | 64425438 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1142?