Generating function
$$U_{1127}(x, y) = 2 x \left(y + 1\right)^{6} + \left(y + 1\right)^{3} \sqrt{4 x^{2} \left(y + 1\right)^{6} + 1}$$
Explicit formula
$$T_{1127}(n, m, k) = \begin{cases}\frac{k {\binom{3 k + 3 n}{m}} {\binom{\frac{k}{2} + \frac{3 n}{2} + \frac{1}{2}}{n}} {\binom{k + 3 n + 1}{\frac{k}{2} + \frac{3 n}{2} + \frac{1}{2}}}}{\left(k + n\right) {\binom{k + n + 1}{\frac{k}{2} + \frac{n}{2} + \frac{1}{2}}}}&\text{if (n+k)%2=1} ,\ \\\frac{k {\binom{\frac{k}{2} + \frac{3 n}{2}}{n}} {\binom{k + 3 n}{\frac{k}{2} + \frac{3 n}{2}}} {\binom{3 k + 3 n}{m}}}{\left(k + n\right) {\binom{k + n}{\frac{k}{2} + \frac{n}{2}}}}&\text{if (n+k)%2=0} \end{cases} $$
1 | 3 | 3 | 1 | 0 | 0 | 0 |
3 | 18 | 45 | 6 | 45 | 18 | 3 |
70/3 | 21 | 84 | 196 | 294 | 294 | 196 |
105 | 126 | 693 | 231 | 51975 | 8316 | 9702 |
6006/5 | 18018 | 126126 | 546546 | 1639638 | 18036018/5 | 6012006 |
6006 | 108108 | 918918 | 4900896 | 1837836 | 51459408 | 111495384 |
554268/7 | 1662804 | 1662804 | 10531092 | 47389914 | 1611257076 | 4296685536 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1127?