Generating function
$$U_{1096}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \left(- 2 x - \sqrt{1 - 4 x} + 1\right)^{3}}{16 x^{6} y}$$
Explicit formula
$$T_{1096}(n, m, k) = \frac{3 k^{2} {\binom{6 k + 2 n}{n}} {\binom{k + 2 m - 1}{m}}}{\left(k + m\right) \left(3 k + n\right)}$$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
6 | 6 | 12 | 3 | 84 | 252 | 792 |
27 | 27 | 54 | 135 | 378 | 1134 | 3564 |
11 | 11 | 22 | 55 | 154 | 462 | 1452 |
429 | 429 | 858 | 2145 | 6006 | 18018 | 56628 |
1638 | 1638 | 3276 | 819 | 22932 | 68796 | 216216 |
6188 | 6188 | 12376 | 3094 | 86632 | 259896 | 816816 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1096?