Generating function
$$U_{1072}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{32 x^{3} y^{4}}$$
Explicit formula
$$T_{1072}(n, m, k) = \frac{6 k^{2} {\binom{4 k + 2 m}{m}} {\binom{3 k + 2 n - 1}{n}}}{\left(2 k + m\right) \left(3 k + n\right)}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
3 | 12 | 42 | 144 | 495 | 1716 | 6006 |
9 | 36 | 126 | 432 | 1485 | 5148 | 18018 |
28 | 112 | 392 | 1344 | 462 | 16016 | 56056 |
9 | 36 | 126 | 432 | 1485 | 5148 | 18018 |
297 | 1188 | 4158 | 14256 | 49005 | 169884 | 594594 |
1001 | 4004 | 14014 | 48048 | 165165 | 572572 | 2004002 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1072?