Generating function
$$U_{1061}(x, y) = \frac{\left(1 - \sqrt{1 - 4 x}\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{32 x^{2} y^{6}}$$
Explicit formula
$$T_{1061}(n, m, k) = \frac{6 k^{2} {\binom{6 k + 2 m}{m}} {\binom{2 k + 2 n - 1}{n}}}{\left(2 k + n\right) \left(3 k + m\right)}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
2 | 12 | 54 | 22 | 858 | 3276 | 12376 |
5 | 3 | 135 | 55 | 2145 | 819 | 3094 |
14 | 84 | 378 | 154 | 6006 | 22932 | 86632 |
42 | 252 | 1134 | 462 | 18018 | 68796 | 259896 |
132 | 792 | 3564 | 1452 | 56628 | 216216 | 816816 |
429 | 2574 | 11583 | 4719 | 184041 | 702702 | 2654652 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1061?