Generating function
$$U_{1027}(x, y) = \frac{\left(x + 1\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1027}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{3 k + 3 n}{m}}$$
1 | 3 | 3 | 1 | 0 | 0 | 0 |
2 | 12 | 3 | 4 | 3 | 12 | 2 |
2 | 18 | 72 | 168 | 252 | 252 | 168 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -30 | -210 | -910 | -2730 | -6006 | -10010 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 84 | 840 | 5320 | 23940 | 81396 | 217056 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1027?